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Abstract

Large~-angle wedges and cones with a
detached shock wave in & supersonic free-
stream are numerically studied using the
one-strip method of integral relations in
special variables adapted to the flow be-
haviour near the body apex., Flows about
pointed wedges and cones (including those
with a concave nose part) at zero angle
of attack are computed. Wedges with small
bluntness at an angle of attack are also
considered, A flow about a wedge=shaped
leading edge of an axigymmetric thin-wall
ducted body is studied., For pointed wed-
ges some local flow characteristics near
the axis are determined, The influence of
various parameters is analysed and some
effects are found. ‘

I. Introduction

The computation of flows past wed-
ges and cones having the finite length A
and the apex semi-angle (1) greater than
the limiting one is of practical interest.
In this case for both pointed and blunted
bodies, the detached shock wave formation
is mainly determined by the body sides.
The mixed subsonic - supersonic flow
occurs behind the wave. This problem has
not been properly solved yet because of
great gradients of gasdynamic functions
arising near the body apex.

Flows past wedges and cones at zero
angle of attack are calculated easier es-
pecially in the case of large bluntness
radius. The last case was treated using

for example the finite-difference method(’

or the combined finite~difference and cha-
racteristics method (2). The flow about

a pointed cone transiting into a sphere
was studied in (3)

To solve the problem it is advisable
to apply the numerical method of integral
relations proposed by Dorodnitsyn ) and
developed for the wide class of gasdyna-
mical problems > ). This method was work-
ed out for the supersonic flow around
blunted bodies (6’7). The method was used
also for pointed wedges and cones in
works (8-11) where, however, the nature
of the flow close to the body apex was
not taken into account and the apex semi-
angles were essentially greater than the
limiting values and enclosing a narrow
range of 10°-15°, Introducing the special
coordinates, taking into consideration
the singularity at the body front point,
the author obtained the solution for
sharp wedges and cones with the apex seml-
angles going from the limiting values to
those exceeding 90° (wedge-shaped and co-
ne-shaped concave noses).

Gasdynamlic gradients rise near the
body apex especially in the case of a wed-
ge with a small bluntness and a non-zero
angle of attack oC .* That is why all
the earlier calculations of asymmetric
two-dimensional flows were restricted to
a flat plate (13 '14), an asymmetric body

* The case of a cone-or an axisymmetrical
intake at an angle of attack when the
flow is three-dimensional is not consi-
dered here,
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with a large bluntness (15,16) and a

thick ellipse (17), Recently the author(18)
extended his approach to an asymmet-
ric flow past a wedge with a small blunt-—
ness, '

The problem of supersonic flow about
a leading wedge-shaped edge of a ducted
axisymmetric body at zero angle of attack
is close to the previous problem if an an-
nular zone of mixed flow is formed in
front of the inlet lip, Only the simplest
case of a ducted body with a flat-faced .
leading edge was considered earlier (19).
Lately the author solved this problem in
the more general case of a wedge-shaped
leading edge.

In the one-strip method of integral
relations 1t is possible to improve the
linear approximation of any gasdynamic
function across the shock layer taking
into account its known derivatives on th
shock wave and on the body surface (20,
The author applied this approach to
predict the stagnation-point velocity gra-
dient and the shock curvature radius on
the axis for a flat plate and a disk in a
supersonic stream. Now this approach is .
extended to the case of a wedge at K =0.

The above mentioned author's results
concerning the numerical study of superso-
nic flows about large-angle wedges and co-
nes, 1s the subject of the present paper,

2, Formulation of problem and
method of solution

Taking the more general case of a
ducted body, the origin of the Cartesian
X 9 or the polar w , & coordi-
nate systems is placed at the apex of the
leading edge located at the distance h
from the body axis (Fig.1a). When h =0
or h«» 0o We have the cases of a cone
or a wedge, respectively. We introduce
special orthogonal coordinates § ' 9 .

connected with the polar coordinates as

follows n
== Senn(0-W),
n=2hcosn (0-w),
R= w/2(R-w).
The line § = §°>0 defines the wedge-
shaped body conbtour with the apex semi-
angle (W and the apex curvature radius
Ro=(1- ;\,)" foi/'\ « Pointed wedges
and cones correspond to § =0 . The fa-
mily of such bodies includes wedges and
cones ( WL /2 ), a flat plate and a
disk ( ) =7/2 ), wedge-shaped and cone-
shaped concave noses (W>» /2 ), The
ray @ = ;x corresponds to the body axis

z=0 -

-
-—

We shall treat stationary flows of a
inviscid nonheat-conducting perfect gas
and take the transformed contituiﬁy equa—
tion and the & —momentum equation, In’
order to improve the computational proper—
ties of the solution for bodles with small
bluntness and to remove the singularity
at the apex for pointed bodies, these equ-
ations are multiplied by T®™%  in the
case of a wedge or a ducted body and by
-2 in the case of a cone. Then
these equations can be represented in the
divergent form

2P; 20Q;
o8 L}

where P; ’ Qi , G; ( L=1,2 ) are
the functions of » 9 » the §- and

Y - velocity components W and U ,
the pressure P and the density P ,
which are considered as dimensionless,
being referred to the critical sound ve-
locity and the free-stream demsity. The
Bernoulll integral (instead of the \z -
momentum equation) snd the entropy equati-
on are added to the governing system.

G, , &)

The boundary conditions for the sys-
tem (1) are specified on the body ;g o
and on the shock wave § = §, (%) , whe-
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re all the quantities are labelled with
the subscripts O and 4 , respectively.
On the body U,z O and besides the ma-
ximum entropy is assumed to take place he-
re, i.e. the stagnation streamline A B
intersects the shock wave at such a point
A (Fig.1) where the shock is normal*.
Thus at the point A the angle § be-
tween the tangent to the shock and the bo-
dy axis iz @ = ol +7%/2 . The shock
wave angle .6 is expreésed as follows

N A . =4

= wotan /AN

o T 2
-1 4%

+ tan ..(1...‘. +Ww.

The gasdynamic functions on the shock

wave are determined from the Rankine-Hu~—

goniot relations in terms of 6 , the

free-stream Mach number M ,, and the

" adiabatic index ¢ (in the present work

2. =1.4).

The numerical solution is obtained
by the method of integral relations. In-
tegration of Eq.(1) with respect to
from the body to the shock yields the
following integral relations

I Q;dy~ Qs 5
| (3
+P, - P,, = J G 4; (i=1,2).

The integrands are approximated linearly
using their values on the body and on the
shock., Then two ordinary differential equ~
ations for the shock wave coordinate §,

and the velocity on the body U, are ob-
tained in such a form
4°f 4o,
2. . P @
dy 7 de gzoy?

* The alternative assumption, that the sta-

- gnation streamline is straight and nor-
mal to the body in the first approxima-
tion of the method of integral relations
wag introduced in '

where at Y =0 in the axisymmetric case
the functions &, , &,  have an in-
determinacy which is evaluated using the
IL'Hospital rule.

‘The approximating system (4) is inte-
grated numerically from some value P = 9 A
corresponding to the shock point A and
& priori unknown., There in an asymmetric
stream, the initial value of d §;/ 42
is found from Eq.(2) and the condition
6=l +7/2 , While the initial
value of Iy is determined using the pro-
posed condition of the zero total

‘mass flow across the line % © 2, . The

sonic velocity must be reached at the bo-
dy corner points C and D (Fig.1),
i,e. here Ugw4d and Vo= ~4 , Tes-
péctively. Two these conditions enable to
determine at the point A two unknown qu-
antities ¥, and §, . They should
be found as the result of the solution of
this boundary value problem for Eqs.(4)
which are repeatedly integrated from Y=
=%, until the sonic velocity condition
is satisfied at the points L anda D .
Obviously '2 in a symmetric stream
(&L£=0 ), and then in fact for pointed
bodies, the initial value problem for
Eqs.(4) takes place.

3. Pointed wedge and cone at
zero angle of attack

Flows about pointed wedges and cones with
the apex semi-angle (L greater than
the limiting W4 were studied in the
case of zero angle of attack. We discuss
some results of systematic computations
carried out for the body angles within
Wy & WE180° and for the free-
stream Ma¢h numbers within 2. § S Mg &
o0 .

The shock waves for a family of coni-
cal bodies with various W and Mg,z 4
are shown in Fig.2, When (W tends to
its limiting value (Jy4  the shock wa-
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ve at the apex (where the body cormers
have little effect) approaches the atta-
ched conical shock at W= Wy , dram
by the dot-dashed line., The sonic point -
on the shock wave (marked by the cross)
shifts non-monotonically when the angle
W changes., Experimental data (@3 for
Mo =4.03 plotted by the black
circles are in the very good agreement
with the numerical solution always ex-
cept the case W = 420° , where the ex~
perimental shock layer is thicker than
the calculated one due to intense viscous
effect apparently. A similar behaviour of
the shock layer, but with larger thick-
ness, also holds for wedges (Fig.3).

The distribution of pressure P, =
= Po/ Poo s relative to the stag-
nation pressure, on cones with various

w at M@= 4 1is presented in Fig.
4 as a function of Y= Y /Yy, ( Y is .
the ordinate of the body cormer point C ).
Near the limiting angle w, the ﬁ o~
curves change thelr shape because the flow
turns the conical one. The value of T) o
at (W= Wyxg for the attached shock is
indicated by the dot-dashed line. As
W >180° then '30 =4 on the whole body
surface except the corner point where
ﬁozo,szs. The pressure on wedges (Fig.5)
behaves in the same way, but for identi-
cal W (if W sufficiently exceeds Wy)
it is somewhat lower than on cones.,

The drag coefficient Cn for wed-
ges (dashed line) and cones (solid line)
is plotted in Fig.6 as the function of W
for various values M, . While moving
away from (W = Wy the quantity C »
increases and as (W »180° it tends to
the value of the pressure coefficient C,
behind the appropriate normal shock, It is
interesting that at the considered values
of Mg, the drag coefficient of the cone
with the angle (O tending to the limi-
ting one for the flow with the detached
shock wave 1s 11-13% less than for the at-
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tached conical shock for the infinite

cone with W= Wy .« The found effect,
remained as () Iincreases within 10°-
20°, 1is due to the fact that the higher
pressure near the cone apex acts on the
small area, while the main contribution
to C.D is produced by the pressure de-
crease (in comparison with the constant

" pressure behind the conlical shock for the

infinite cone with W = Wy ) on the
rest part of the body. Recently this effe-
ct was confirmed by experiments (23) sho-
wn by the black circles in Fig.6.* For
wedges the similar effect is not observed
in the calculations.

Some local properties of shock waves
for wedges (dashed line) and cones (solid
line) at Mo =4 are described in Fig.7.
Here the shock wave detachment distances
neasured along the axis from the body
apex § and from the body cormer cross
section §¢ , the curvature radius of
shock wave at its apex R, , the ra-
tio € /Ry are plotted versus (W ‘
(all these distances are referred to y c Yo
The ratio ¢ /Ry essentially depends on

w (the opposite incorrect conclusion
was made in work ), it remains fini- -
te for W Wy (since both ¢ »o0 ,
and R, % O ), and tends to infinity as

we-» 180° +« The curvature radius
has a maximum at some W .

The change of the ratic ¢ /Ry
at W » Wy in the range 2. 8§ £
< M”soo is shown in Fig.8. The calcu=-

* While this paper was in printing, G.
Drougge informed the author that ear-
lier he also found the same effect in
the experiment and in the calculation
for the transonic flow about cones
(Drougge G. The flow around conical
tips in the upper transsonic range,
Flygtekniska Forsokssnstalten FFA, Med-
delande No.25, Stockholm, 1948). This
publication was not available for the
author formerly.



lated limiting values Wy for wedges
(dashed line) and cones (solid line) are
compared with the exact theoretical valu-
es for infinite bodies (circles), that
enables to estimate the numerical soluti-
on errors. These errors increase for smal-

ler M, due to a shock layer thickening.

However the accuracy of linear approxima-
tion is sufficient to predict properly
gasdynamic distributions along the body
and the shock wave,

4, Wedge with small bluntness
at an angle of attack

The computations of flows past wedge-
shaped bodies with a small bluntness at an
angle of attack were carried out for the

following range of parameters: W= 6§0°~
-120° + F,= 004~ 0.4 , .
M= 2 — ©0 » L =0°-145°

The calculated shock waves for a se-
ries of Mg at oL =10° are drawn by
the solid line in Fig.9 for the blunted
wedge &, = 0,04 with the apex semi-
angle W= 60° , having the apex curva-
ture radius Ro=0.0086 0 ( € is
the body length)., Here the shock wave for
ot=0’, Me=4 is also depicted.
The sonic points on the shock are marked
by the circles, while the initial (A) and
the end (B) points of the stagnation stre-
amline are marked by the black circles.
The location of the stagnation voint B
strongly depends on &£ and almost does
not change for various M g within the
considered range.

For the same wedge and various ol
the body surface distributions of the ve-
locity Uy and the relative pressure ]30
are plotted versus the relative ordinate

g + An abrupt veloclty maximum incre-
esing with the rise of & (and according-
ly an abrupt pressure minimum) appears.
Here at of =145° the velocity exceeds
the sonic value and thus a local superso-

nic zone occurs on the body (Fig.10).

The coefficients of tangential force

Ct , of normal force C, and of longi-
tudinal moment (, as functions of the
angle of attack of are presented in
Fig.11 for the same wedge W= 60° . The-
se coefficients are related to the body
width 2Y . , the coefficient of mo-
ment C,. , being calculated with res-
pect to the axis passing through the bo-
dy front point, also includes the length

(, « When ol rises, the pressure on the
body windward side increases larger than
it drops on the leeward side (see Fig.10),
and as a result the tangential force coef-
ficient (4 slightly decreases.

The influence of Mach numbers upon

the pressure distribution on the wedge
W= 60° , §,=0.014 at ol =10°is de-
monstrated in Fig.12., As My increases,
the pressure drops abruptly on the small
bluntness (here at Mg =7 the velocity
happens to be supersonic) and a conside-
rable difference in pressures on the wind-
ward and the leeward sides occurs. The co-
efficient C,, falls significantly at low-
er M, due to the more symmetric pres-
sure distribution, while Ce decreases
only a little (from 1.55 at Mg =6
0 145 at Moe=2 , ob =40° ), In ad-
dition the (fy~curve is drawn to charac-
terize an effect of bluntness radius R., ’
which manifests only locally near the body
apex. The velocity maximum decreases as
Ro rises, e.g. at Mgp=4 , ot =10°
here Uomax= 0.31 for R,= 0.064 L ’
but no maximum of Uo occurs for R =

0.147 L .

Figure 13 shows the influence of the
apex semi-angle (J in the case of Mg,
=3 s o =10° ’ }:,,--o.oi + He-
re We present the graphs for (, , the
relative ordinates of the points A and

B s the shock wave detachment distance
t along the axis y=0 referred
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to Y. o It is anoticeable +that 38 > 56
for Ww =120".

5. Blunted leading wedge-shaped
edge of a ducted body

An annular zone of mixed flow is
formed ahead of a blunted leading edge of
a ducted axisymmetric body located in a
supersonic stream at zero angle of attack,
if the relative thickness of the body wall

§=24./Ch-Y¢) is not large,
i.e. the radius h (we refer h to Y
is comparatively great. In this case (see
Fig.1a) the mixed flow in the shock layer
region, bounded by the characteristic sur-
faces CE and DF |, is formed by
the leading edge and does not depend on
the gas motion inside the duct., The alter~
native flow with a single detached shock
wave located ahead of the whole ducted bo-

dy is realized in the other case for lar- .

ge 8‘ or small" h » We shall treat the
first case of flows about wedge~shaped
edges with small bluntness and large apex
semi-angles and study the influence of
the body geometric parameters and the
free~stream Mach number.

The shock waves ahead of the leading
edge, having the shape of the blunted wed-
ge W=60", F =001 , Ro=
=0.0086 € , are drawn in Fig.,14 for
a number of Mgs » The shock wave for
the same wedge in the two-~dimensional flow
(as hs )at £=0° , Me=4 .
is also depicted here by the dashed line.
As it is seen shock waves detach from the
inner side of the ducted body edge far-
ther than from the outer one., As R incre-
ases the stagnation point B shifts to
the axis Y = 0 s but its location
weakly depends on Moo .

The distributions of pressure F °
and velocity U, on the wedge-~shaped ed-
ges, which have the above considered form,
but the different radii h s are presen-
ted in Fig.15 for Mg, = 4 ., When the

flow about an edge essentially differs
from the two-dimensional one, i.e. h

is rather small, an abrupt velocity maxi-
mum snd a pressure minimum arise on the
edge small bluntness.

Now for the same edge we shall analy-
se the drag coefficient Cp (referred to
the area of the annular body cross secti-
on) end the coefficient of stream contrac-
tion yr=(h+4,)Y/(h+Y5)? . It is
shown in Fig,16 how they change with h
for a series of Mg, « As it should be
expected, when the radius h increases,
the drag coefficient rapidly approaches
the asymptotic value for the appropriate
two~dimensional flow, while the coeffici-
ent of stream contraction tends to one.
The free-stream Mach number affects C-n
appreciably and ¥° very weakly (in
Fig.16 the -curve is practically iden-
tical for Mgy=2.5 -~ 6 ). Natural-
ly, both coefficients depend on ) .

6. Determination of flow parameters
near the axis

In order to improve the accuracy of
the one-strip method of integral relations,
any integrand in Egqs.(3) can be approxima-
ted by the Hermitian third degree polyno-
mials taking into account the values of
the appropriate function and its first de-~
rivative on the body and on the shock wa-
ve. Then

¥ -
jk‘cht < (Qo + Qo) 253

(;g‘ yo)z y

+ (aaio - . QQ;,)
12

¥ ¥

where the first term concerms the linear
approximation. The involved derivatives
d*t, /do?

can be expressed in tems of h/ 2%

doo/dy and the kmown vorticity
on the body and on the shock. As a result
instead of Eqs.(4) the other approximating
system is derived, namely
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& B AW _F
dy?  a(s) ' de*  ve(ar-vd)

We shall consider the case of a flow
past a blunted body § = §, with the
apex semi-angle (J at oL = 0O . Since
Vo= A(6 )= 0 on the flow axis, the
regularity condition provides two equa-
tions }"1 = ¥, =0 which have the fol~-

lowing form
&% e CL(%S)'? 8(%-‘5)+c=0,

(ﬁ) rdln) ez 4
'I‘he coefficients in Eqs.(5) are ex-
pressed in terms of W , §,

. and presented in work
w = 50‘ 4 E P-3 = o

k,, o_ao»

@hH .

When a pointed wedge ( &, =0 ) is
considered, the coordinate §, can be
actually eliminated from Bgs.(5) and then
the values of &6/dy and dVUo/dy on
the flow axis 9 =0 can be found with
the aid of an iterative procedure. In ad-
dition, here € =7%/2 d"G"/&z

Vo = o(. d'o/d.z"-o and consequently
using the power series expansions with
_respect of , it is possible to deter-
mine the flow in the neighbourhood of the
axis with acceptable accuracy without in-
. tegrating the differential equations,but
only solving the algebrailc equations (5).

The stagnation point velocity gra-
dient dV,/dS  (where § is the arc
length along the body § = §, ) is

A-U'g '.!'_":!' Ad‘o

F IS

Therefore this gradient is infinite for

a pointed wedge, is finite for a flat pla-
te and vanishes for a pointed wedge-sha-
ped concave nose, The curvature radius at
the shock wave apex is

- 4 [deyd
Ka"“;:'(a—i .

Referring all the lengths to the shock
wave detachment distance £ . , we find
from Egs.(5) and plot in Fig.17 the deri-
vative dUo/AY (solid line) and .
the ratio €/ Ry (dashed line) ver-~
sus (W for a serieg of the free-stream
Mach numbers,
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Fig.3. Shock for wedges, M, =4



Fig.4. Pressure on cones, M, <=4

1.2 L 1 1

30 60 90 120 w°

Fig.6. Drag coefficient of cones
(50144 1ine) and wedges
(dashed line)

Fig.5. Pressure on wedges, M,=4

| T
09,/
30
Fig.7. Shock parsmeters for cones

(s0l1id line) and wedges
(dashed line), M, =4
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Fig.8. Limiting angle and ratio
€/ R, for cones (so0lid .
line) and wedges (dashed Fig.9. Shock for blunted wedge W =60° ,

line) . £,=0.01, ol=10°

Fig.10., Pressure and ve}ocity on Fig.11. Aerodynamic coefficients
wedge W= 60°,§,20.01, of wedge W = 60% §_ =001
- o o =001,

oL =10 Mo e
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U
=4

Me 1.500 L. 0.2
60 90 120 W°
Fig.12. Pressure on wedge (W = 60°, Fig.15. Flow parameters for wedges
§o=001 X=10° and $o2 0.01,L=10°, Myp=3

velocity }._o 204, 0l= 10°

-

f(‘i ((; A i ALY &4 % s

! Fig.15. Pressure snd velocity
Fig.14. Shock for blunted edge on dx:ct edges
of duct W =60°, £,=0.01, w=60° k=001, My=9
h=6
o
K =0
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Fig.16. Drag snd stream contraction Fig.17. Velocity derivative and ratio
coefficiente for duct edges 3 / R, on axis for wedges
W=60"+k =001 ,M0=4
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